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Abstract

A combination of analytic modeling and sys-
tem iden_tion methods have been used to de-

velop an improved dynamic model describing the

response of articulated rotor _ to control

inputs. A high-coder linearized model of coupled

rotor/body dynamics including flap and Is8 degrees
of freedom and inflow dynamics with literal coeffi-

c_ _ compared m fl_ testdata_ singlero-
tor helicopters in the near hover trim condition.
The identification problem was f_ula_t using
the maximum likelihood function in the time do-

main. The dynamic model with literal coefficients
was used m generate the model states, and the mod-

el was p&amewized in terms of physical constants

of the aircra£trather than the stability derivatives,
n_Oting in a significant reduction in the number of

quantities to be ideatified. The likelihood function

wu optimized_ the genetic algorithmap-
pro_ This method pmv_l highly effective in

producing -, emima_l _ from flight test dam
which included cropped f_e_x dynamics.

Using this _ itlu_ been shown that blade
flexibiUty is • sil_iframt conm_ti_ factorm the

betweem theory and experiment
shown in previom _ Addition of flexible

modes, properly iem'p_atin$ the constraint due to

the lag dampers, results in excellem asreement be-

tween flight test and theory, especially in the high

f_equencyrange.

Presented at Piloting Vertical Flight Aircraft: A

Confenmce On Hying Qualities and Human Fac-
t(_, San Francisco, California, 1993.

Introduction

The investigation of rotorczaft dynamics, and

specifically the coupled fuselage/rotor dymunics, is
motivated by increasin8 sophistication in rotorcraft

stability analyses and by the emergence of hish-

performance flight control system design _-
merits. The past few years have seen aconcentrated

effort directed toward providing anmalytic_da-
,ion model of coupled fuselageRotor dynamics and

model validation against flight test data.

I_licop_.xdynamics include the rigid-body

responses demons_'ated by _-_ aircraft,

plus hisber-f_equency modes generated by the in-

te,racfions of the rotor sys_mn with thefuselage. For

earlier flight control sys_.m designs with lower

bandwidth requinmamts, it was sa_f_:toryto use

low=(xder analytic models which did not accurate-
ly model the hish-fn_luency rotor dymunics: with

the recent _ion of hish-performmce, kish-
bandwidth control system specifr_ons, it has be-

come increminsly necessary to cocrectly model the

coupled fus¢lag_x_r dynamic modes. It has long

been known that flap dynamics introduce signifi-
cant time delays into tbe ro¢orsystem, and more re-

cendy. _ has shown that inclusion of the lab

aym_:s is i_mrts_ i_ dz _ of hisUper_cr-
manc_ control systems (Cuniss. 1986). l_znt

studies have explct_ the possibility of usin8 rotor

state feedback designs to damp blade minion (Ham,

1983). Aa accurate understandin8 of the coupled
fuselase/rotor dynamics is _ore iml_'tant in

rotorcr_ control system design and stability analy-
ses.

Recentflight testexperimentshave shown
that existing simulation models do not accurately



predict these high-fiequency modes (BaUia et. al.

1991. Kaplita et. al, 1989. and Kim et. al, 1990).

These studies show signifzant differences between

theory and ex]3erin_t associated with the coupled

rotor/body dynamics, especially in the frequency

region dominated by the rotor lab motion. This re-

search is therefore directed toward providing an im-

proved understandingof the aeroelasticand

a_ca_.hanical phenomma which determine the

coupled rotor/body dynamics at hova.

In order to gain physical insight into lzlicap-
ter dynamics, devel_ of linear models incof

l_ratia8 coupled retor/hselase dynamics has long

been a research objective. Past a_ to linear
model development have inchlgkd direct numerical

lamarbatioa c_ noalinew simulatiom (Diftler,

1988), identification of stare-space stability and
control matrix elements (Tischler. 1987). and ana-

lytic derivation af linear equatiom _ motion (Zhao

and Curtiss, 1988). This study uniquely combines

system identificafim methods with analytic model-

iag t_.hniqu_ in order to invmtigm lzlicop_r

hov_ dynam_ and to arrive at an improved linear

modeL TI_ emphasis is m d_ high-flequm_ dy-
namics of the coupled rotor/body motim.

The identification study is carried out ou

flisht teat data fiem a Sikorsky H-53E helicopter at

hovu. asia8 previouslypublisheddatatXaplitaet.
al. 1987,,,,a Mayoet. el. 1990).

Research Object/vm

This palm"descrflm m invesdipaica imo the

a_ome ct micala_ roa_ _ to cmuol

iapua ia hovm T_ _1 i, m improvedaader-
stamii_ o[ flu coupled _ dymanics in

hover _ toward • validated malytic simula-
tim modettaded_ hia__ ro_/hse-
tge dymm_ for m in mbOltymdym md
hiSh-perrcrmEec,am_ _mn d_wa saal_

Idmtific,afim of linear, time-iavariam state-

spacemode_ an_mi_ _-a_ he_.op_
dymanics includin8 main rotor degn_ ¢fffreedom

has ling been an objective of engineen involved in

mmrcraft simulatim and cmtrol system design.
The state and control matrix elements in an idend-

fled state-spsce model cm provide physical

into system dymunics and can be used in combina-

fire with mathematical modeling mchniques to

analyze differences between theory and experi-
ment.

State-space identification techniques have

been applied to conventional fixed-wiag aircraft
with useful results. Since identificatioa of state-

space models using directly parametrized state and

coatrol maa-ix elemeats requims the estimatioa of

a large number of p&ame_rs, a ngiuced order mod-

el is often used, assumiag six degree-of-fn_lom
rigid body dymunk.s and decoupling between the

loagitudinal and lateral axes.

Identification of reduced order state-space
models for nm3t,craft have 8eneraIly produced un-

satisfactory results. The _ of the rotor pro-

deces si_ rotor/bodycoepHns,_
additional states to describe the high-frequeacy dy-

namics, and also inaoduces significant interaxis

coupling. The complete rctorcraft idmtifr, afion

problem is dm,efore required to use a hish-order.
m:uJfi-input, multi-output model with as many as

18 or more states.

In order to avoid the inevitable la_iem c_
overparamea'izafion which results when attempt-

ing to identifya direcdypmunetrizedhi_-ada
model this study uses au analytic model

to geacram state tinz historY. TI_ model us_l ia

this study has been developed atPrinceton using the

Lagraasianformehtim,ttimlade8_cmpled fu-
selase/ret_dymmk_ mainretoriaflmv,tailrotor

thnm.tad_,ovidmfertailtoter_ dynmi_.

Itwas analytkal_linearizedaboutbores.This

model taevidm a state-sga_ dmcriptim _ the he.

Ucqaera hov_ whimis cempte,e_, ,a_dyticand
dependent only on m input set of physical immne-
_s. A mbset c_ these iui_m ue _ unto.

taia. aud me to be __,_-__ _ from flight test data.
TI_ flight-am da'iv_ im'ame_ es_mams caa be
used in combiaatioa with the mathematical for-

mulatioa to _ various physical aspo0ts og

coupled rotor/body dynamics and thereby obtain

physical imisht. The complete high-order mode_

including rotor dynamics _ be reasonably para-

metrized by 15 or fewex l_ysically meminsf_ in-
put coe_, msalting in a substanfitl reductioa

in the number _ paramea_ to be estimated.



The framework of the identification ap-

proach is the time--domain maximum likelihood

methodology. The likelihood function is formu-

lated assuming the presence of Gaussian measure-

meat and process noise. The process noise may be
n_awhite. The noise c,ovafiances as well as process

noise dynamics may be parametrized. With Gaus-

siau noise assumptions, the Likelihood fuactim be-

comes the weigha_d least-square of the residual

etr_'s. The Kalman filter is the nalxtralway to pro-

duce these residuals for state-sp_:¢ dynamic sys-

The maximum likelihood estimate is ob-

tained by finding the global maximum of the likeli-

hood function. The parameters arc nonlinem-ly

related to the cost functim and the resulting p&sm-
etex space is highly multimodal. Traditional rune-

tim optimization techniques based ou gradient

methods generally become trapped in local optima.

The genetic algorithm is an alternative func-
tion optimization approach which does not rely on

the use _ local gradient information. The genetic

alsofithm is an adaptive scheme, based on the anal

ogy with natural evolution, which efficiently

searches a large parameter space for the 'fittest'

solution to a 8iven objective. This method has been

demonmated to be highly effective in ob_ the

global maximum in a multimodal parameter space.

The formulafi_m _ the system identification

problem in the maximmn likelihood fnv_-wcdc

leads to estimates d physical _ts which

haveam_c_vestatisticaloptimalityprol_n_and
thebestIxm_lecombios_ooof_ysical

_m _ tomar._d)el_ventestdata
set.

Thin_ methodolol_allowsan

_ d modd moo_xmos _mt m _
_ mafel usai to _aerme the state time

histodes. In thk study, emphmis is plwed oa the

fratuency regim mccimd with coupledrocor_-
_e_ dymunic,. In____
domimmt feature in the rotor msgnimde response is

a notch_ ixoduced by the presenceof
the in-pla_e blade degree of freedom. Using rotor

bladeconstantsderivedthroughtheidentification

procedure, rotor blade modeltn8 assumptions may

be examined, r_ulfia8 in analytic model improve-

ments. This study examines in detail the blade

structural modeling assumption and investigates

the effect of accounting for blade flexibility effects

generated by the presence of a huge mechanical

damper at the blade hinge.

Analytic Modal Description

Reseaw,h at Pdn_ton has resulted in the de-

velopment of a linearized rotor/body helicopter dy-

namic model The dynamic equations are

formulated using a Lagrangian approach i. _der to

capture all the important inertial coupling terms.
The model includes risid-body _anslatioa and

rotation (pitch. roll and yaw rates, longitudinal and

lateral velocities), rigid blade lag and flap multlmo-

dal cooalina_, azai maia rotor cyclic dyaamic ia-

flow. TI_ cmuvls arc m_ rotor cyclic md pedals.
The ve_ion of the model used in this study was _-

lyticaUy lineariz_ about the hover trim condition

and does not include the collective degree of free-
dom.

Rctorcraft dynamics includes coupling be-

tween the motion d the fuselage which is in rota-
ticaal and translafioaal mo_ou relativeto

space, and the motion of individual rotor blades.

The final set d equations of mctim are _efe_enced

to the body-fixed axis system which has its origin

at the fuselage center of gravity. In the Newtoaiaa

approw.h to modeling coupled rotorK_selag¢ equa-
ticm d motion, blade acceleration terms are first

wrimv, re.._'mcedm d)ehub ax/swhich is rom_
at constant velocity; coordinate mmsformatlms are

then used to obtain gx_leratim _ms in the body-

fixed frm_. The mmplexity dthe resulting accel-
eration _ms, combined with the _ber of

degrees e[ f_eedcmnecessary to model rotor dy-
namicsproperly, has led to the use c£ Lesranse's

equations for the derivatioa of the coupled rotor/
body model.

The development c£ LNp'anse's equatiocts

pro_ ft_n theevaluation¢£ theLNpmgi_n.

which nxlui_s rely positim md velecity _ms in
order to _ the system _ forces to

changes in the sysmn kinetic and potential ener-

gies. The gm_mdiz_l coordinates in Lasrange's
approach represent the degrees _' fn_clom in the

system and are chosen to correspond to the system



states.Thekineticenergytermincludesthemorion
of thefuselagesadrot_ blades,andthepotential
energyincludesthegravitationalpo_.atialenergy
ofthefuselagemui_ energy in the mechanical

sprix_ in the rotor system. Mechanical dampers

are accoua_l for by use of the dissipmim function.

The generalized forces include aerodynamic forces

due to fuselage and blade m_xtynamics. Evalua-

tion of the time and partial derivatives in the La-

grangian can be time consuming for a high-order

model and can be assigned to a symbolic manipula-
tim program such as MACSYMA.

Identification Methodology

Ljung (1987). The linear time-lnvariant state

equations are derived usin8 the Lagrangian ap-

proach, and are given by

The model form accounts for the presence of pro-
o_s nc_e, where wO) is assmned to be zero-mean

white ncise with unity spectral density. The ccndn-

uom-dme matrices, A¢(O), B¢(O), and F_(O), are

p_rametrized by a vector of parame_.ts, 0. wl_ch
are to be esdmated from observations.

The observations m'e sampled at _crete
time intervals, where

This paper describes an approach for identifi-

cation of a coupled fuse_ model for rotor-

craft hover dymmics from flight mt

measurements. The identified model includes flap
and lag degrees d freedom, main rotor _. md

proceu md memmement noise di_. The

process noise may be colored. The approach uses

an analydcaUy dm,iv_l, linear dme-invariam

staw-spsce model with literal cce6_ients which is

pamnetrized in terms _ _mechs_ inpu_co-

e,/_ients. The model order sad stngture may

therefore be assumed to be demmined by this ap-

prmch, and the system perm_ters ire to be esti-
mated from observations. The paxm_ter

esdmatim problem is formulated using the st_d-

cM framework of maximum like_ (ML) es-

th_xy, mm_by bmea_ from known
opmmm,y _ _ ML m_zr., T]_ d_-
cmsion first [xmmts the parameldmd dymunic

model to be used in the idmtificadm methodology.
and thm _ the gpplkatim of the maximum

likefihood miumim _ to dymunic sys-

y(ty') = c(o)x(_r) + G(O)v_kY')

t=kT. k=0,1,2 .... (2)

and vr(kT) are the disturbmce effects at the

sampled time in_'vals.

For digital implementation d the idend.fica-

don algorithm, the continuous-time sta,e equation

given in Equation ([) is disc_dzed using re'o-or-

der hold. The input is assumed to be held comtant

over the sampfing time inte_vM, and the continu-

ous-time state equadm can theu be integrated ma-

lyrically over the interval in ordm"to obtain the

discx_te-dme stateequation.The zem-.mderhold

discretization introduces a phase lag equivalent to
one-haft sample int_vM, which is taken into sc-

cou_ by advm_cinS me coam_ input by d_e torte-

sponding one-half time in_rval.

_imln*ting time subscripts for simplicity,

the discrete-time m_-sp,ce equadons are givm

by

x(t + l) = A(O_t) + a(o)uO) + F(o)w(t)

y(t) - C(o_t) + G(o_t) (3)

Modld ]humuctrizamm

The _ is modeled ss a cmdnua_-

time dymunic sys_.m whose _ are dis-

cretely smnpted as sensor outputs. Thin the
idmtific_m algorithm is required to es_m_ con-

dnuom-time model parame_-_ from discrete sen-
sc_ measurements. This condnucm/discreue

fommlafi_m is well known and is discussed by

Th/s equadm is now undeastood to be a discre_

dine equadou. Hem, wO) and vO) ate sequmces

c/' independent random variables with zero
md unit covm-im_

Maximum Likeli]tood Formulation

Let yN be a vcgtot o_ observations which are

supposed to be realizations of stochastic variables,



andlet y(Dbea multi-dimensionalobservation
takenattimet:

and_(t, 0) is generated using Equation (3) with the
d_rete-thne Kalman filter formulation.

yN. [.v(1).y(2),...y(N)]

The observations, yN, depend on a vector of param.
eters. O, which are also considered to be random

variables. The conditional la'obability density
functioe for O. given the observations, Y_ is then

given by

_r") = P(_)" p(0)
p(y_ (4)

whe.m p(0) is the prior distributioa of the raadom

paramc_.r vector. A re.asoaabl¢ ¢sdmaz for 0 can

then be obtained by faxtiag the value of 0 which

maximizes the conditional density _ given

by Equatim (4). With ao 0riot kaow_ of _
disaibutim of 0, p(0) may be assumed to be uni.

form. The be.stestimate for 0is d3e.nobtained by

maximizing the likelihood of obtaiaiag the ob-
servatiom. This le.ads to the ML. or maximum li-

ke.cod, estimator, gi_za by

(5)

For parametrized dynamical systems, with

Gaussim norse ummpdcm, the maximum 15zli-
hood estimator has the form

- m,# - sr(t.o),t-.(ekKt.o) -
t-|

_to_/i(o_---_Los_ (6)

whe,le

m - number of me.a.mremeaty

_(t,0) = y(t) - gt,0)

A(O) = g_(0)F(0)

The Genetic Algorithm

The ¢valuatioa _ the likelihood function as

presented in Equation (6) requires a search for the
global maximum of the likelihood fuactioa over a

muitimodal parameter space whose contours are

not known. Specifically. the ideafificatioa method-

ology has led to a function opfimizafioa problem

wheretheperformance measureis a highly n_elin-
ear function of many parameters. The principal
challenge facing the identification problem is the

very large set _possible solutions and the presence

of many local optima. I-r_dl-dimbiag methods for

ftmcfica optimization based on finding local gradi-

eats become trapped ia kr.al optima and are iaade-
quam for this problem. Geaetic algorithms

ovew,oa_ these _ by effideatly seaw,hing
the paramem"space while pre,serviag and incorpo-

rating the best characteristics as the search prog-
reSS_.

T__ prelim o_faaaim optimiz_oa cao be
addressed usin8 the paradigm of adaptive systems.

where some objective performancemeasure (the
cost fiaztioa) is m be maximized (i.e.. adapc_im

occurs) in a partiaUy lmown and perhaps changing

eav_oameat. The idea of mificial adaptive plans.

based oa an analogy with genetic _olutim, was

formally described by John Holland in the seventies

and have recently become m imtaxtam tool ia
function opfimiza¢ioa amt machine leamiag (Hog

land. 1975, and Goldberg, 1989). Holland's artifi-

cial adap¢ive plms have come to be known in recent
ti_ature asgene_ alS(mthna.

C_aetic algorithms m ba_ m ideas uad_--

lying the process ot'evolufion; i.e.. naturalselection

and survival d the fittest. Usiag biological evolu-
don as An aualol_, _ algcdthms maintain a

populatioa d camiidam solutioa_ or 'iadividuals,'

whose cham:te6sti_ evolve according to specific

geae_co_ra_om iaorder_ solvea_vea uuk m

ano_ way.

As a general overview, genetic algorithms

have the fdlow_ attributeswhich distinguish

them from traditional hill-dimbin8 optimization

methods (Gddberg. 1989):
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GA's work with a representation of the pa-

rameter values rather than with the param-

e_"s themselves.

GA's search from a population of points,

not fr_n a single point.

GA's use objective function information,

not gradient hxformatiou.

GA's use probabilistic u-ansidon rules, not
deterministic ones.

The genetic algorithm main"rains a popula-

tion of 'individuals'; i.e., possible solutions to the

function optimization problem. In the context of
the identification l_:_bkm, each individual co_-

sponds to a vector af parameters. The populatim

of individuals 'evolves' according to the rules _re-
production and mutation analogous to those found

in natural evolutionary p_3cesses, with the result

that the population preserves those
favoring the best solution to the cost fimction.

The following steps were _bed by Hol-
land (Holland. 1975) and contain the essentials

properOesc¢az _ tmic smeac _criaun.

1. Select one individu_ from the initi'_ pop-

ulation pmbabmsdcaUy, after assignin8

each individual a probability proportional
to its observed perf_

2. Copy the selected individual, then apply

gene_ operators to the copy to prcxhr_ a
new individu_

3. Select a secmd imlividuM from the popu-

latim at nmdom (all elmnmm equany
m_) mda_t,_ a byt_ newmdividu_
produced,- step2.

4. _ md m:ord dzeperfmmm_ ct the
now_

5. Retum to step 1_

This deceptively simple set of inuructions

cm_ the abfl_y m _ large numbers of new
combinmiom of individual characteristics and d_e

abi_ty to prog_vely exploit the best observed

characteristics. It does so through die use of_ne6c

operal_'s.

Genetic Operators

Parent selecti<m based on fitness, and the

subsequent application of genetic operators to pro-

duce new individuals sm the steps by which the al-

gorithm modheies the initial popu/atiou and

cc_tinually tests new combinations while main-

tah_in8 those parameter sets which give high fit-

hess. Each of these operations are performed
pmba_y.

The initial population of individuals is se-

lected randomly with a uniform disu'ibutlon over

the defined parameter space. After oae generation,

parent individuals arc seJccle..drandomly, with a

probability which is proportional to the fitness as-

signed to that individual The selection l_ocedun_
resembles spinning a roulette wheel whose circuat-

fe_'ence is divided into as many segments M then_

m,e individuals. The arc length _ ew.h sellment is
made proportionM to the fitness value of tlz com_

_ _uviauat. Thus,_e c_mce c_cUoos_
a 8iven indiv/dual is uniformly random and yet pro-
portional to its fimess.

The 8ene_ operations _ crossover and

mutadon are then applied to the selected pa,rm_in.
dividuals in order to introduce new characteristics

into the population, enablin_ an efi_ient search for

the optimal ccmbinadon of parame_-s.

The crossove_ operation involves a recom-

bin_an of two selected individuals at a randomly

selected peint. Tiros the crossover opermion pro-
duces two new individuals, each _ whom inherit

_ from both parenm.

The mutat/ou operation involves, random
altematiou c_au individual's cJxaracted_ with a

very low probability. This saves to introduce new

infatuation into the pool _ _ and serves to

guardaSatustmepossibin_,_becoming u-app_din
localoptima.

Geue_ Com_

Ea_ individual is a candidate parameter set
and is represented as a concatenation _ individual

parameters:



e = [e, 02 ..... oN] The genedc alg_thm is illustrated in Figure
.

In a digital hnplementatic_, each parameter

0 i is encoded using a binary alphabet, and the indi-

vidual is thus represenl_d by a binary-valued

su4ng.Thefollowingspecificcodingschemewas
suggested by Starer (Starer. 1990).

Let each parameter 0i be bounded by 01._

and 01.._. If each p_ameter is coded in binary with

a word length of I. then the interval [0,_ .0,,.] is

discretized by 2t values. A representation of thepa-

rame_ O, _ be obt_ _ t_ l-bit binary

co.of

To illustrate, let m individual represent a

candidate parmnetriz_on where

o -[o, 02]- [3 4.51

sodbouzl m Ovenm

0 i 0 0

i 0 0 i

1 I i i
0 1 0 0 initial population
0 0 1 1

i 0 1 I

1 _ parentselection
based on fitness

0 0
1 0

1 \/ 1 randomly selected
0 0

crossover point

0 1
1 1

1 _ croxcover

0 0
1. 0
1 1 random mutation
0 O*
1 0
1 1

1 1
0 0
0 0
1 1 .ewpopulation
0 1
1 0

1 1

l-<Os <4,2<02<7, !-6
F_ure I _ Gcelk Alkcri_

The binnry-valued string representing this candi-
date vector is then

0e,_._ = [101010011111]

Implicit Parallelism

Geneticalgorithms¢fficiendyconducta

over adefinedparameter space, coeverging



toanear-optimalsolution.The basicunitofpru-

cea,u_infonnationin thisgeneticsearchisthe

schema,dexeua_by Holland(1975).Inthecontext

ofa digitalimplementationofgeneticalgorithms,

a schema isa templatespecifyingsimilaritiesat

certainstringpositions.

Thus,anindividualisa stringofbinarydig.

its,and the alphabetiscomposed of {0,1,#},

wheae# denotes'don'tcam'(i.e.,thevalueatthis

position has no effect on thePerformance me_-

mint). As an example, an mdivid_ may be rel_-
senmd u

[0011101100010]

A schemaisasimilaritytemplatewithinthis
individual;sothatthisindividualcontainsthesche-

mm givenby

[00##I01100010]

Given I positions, a singleindividualisan

instanceof 2 t distinct combinations, and an

instance of 3t distinct schemata. Further,al_pUla-
fionofsizeN containsbetween31andN3tdistinct

schemata.Ho!!andhasshown thate,ach_

am evaluatal and processed independe_ly of the

others, provkfiug a tranmxlam canput_onal le.
vera_ on the munber of function evaluaCa_.

Tberefore, the u_ of gene_ opermas in rbe repro.
du_vephm_ i)_pmUefimnin_

_es_nSmdemof nmy _ _d _) comp_
stenlle .,,a -meet larp ,.._mnm of informationre-

Theo_ce_oftnq_ t_ensm isfunda-
_ tothe_ ofpmte dgorithms.
Each sc,.hmnatais lXUCessedand evaluated indepen-

dem_ofotherschemainthe_ thisoro-
_ a __tatk_ _en_. A
very weak lower bound states that fog a population

of (n)individuals,more _ o(ns)useful'pieces'

ofinformationisprocessedineachiteration(Gold-

berg,1989).

An Example

As an i/lustration of the genetic algorithm,

considerthefollowingexample.

f_x,y) =

3(I- y)2e-'2-c'+t_2 -

The fun_on surfaceisshown inF'tgure2,

alongwiththecontourfines.Thismulfimodal

function has a global maximum at

(1.5814,- 0.0093).

A geneticalgorithmwas rimon _ fun_on

with a population size of 20. The initi_ guesses
were chosen randomly, and were bounded as

-3<x<3. -3<y<3. A binary c,.¢xle

withwordl_.engthof8 was used,whichmeans that

both x and y were _ by 256 lx_in_ Anex-
hanstive grid search under these conditions would

involve evaluati_ 65536 possible points to find the
giobal ma._um.

Snapshots of thepopulation _tion up to

7 gea3erations an._shown in Figure 2. TI_ anapshoCs

showthe popuhu_ convergingupontheglobal
maximum: by the 7t_generat_n,moatoftheindi-

viduals have convm2_ on the maximum. The ge-

uetic algorithm in this case convages on

(1.5412, - 0.0353) as the global e_mum.

T_ convergen_ has _ after 7 gen.

erations. With a population size of 20 individuals,

tiffs is 140 fun_on evaluations as compared to the
65536 necessary fo_ the grid se,,ew,h.

This relatively _mple ex_pte sm'vm to il-

lumate the ability of the genetic algorithm to find

theop_num ofagivm _. usingnogradient

/nfomu_o_

Analytic Model VaHdatiom

The mmhematical model is contlated with

flight test datausing nominal values for input coef-

_cients. _ __ plots ,- F_ns 3 show
u-ansferfunctioncomparisom for pitchandrotl
axes. Thedm_separ_. Ineach
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case, the conlpsrison is between the flight test rate

gym _tput and the model state. The comparison

is made between 0-_ _ (3.14 rad/sec) and 6 Itz

(37.7 tad/see) _ the input signal was designed

to cover this fm:luency ranse. The fuselase stn_-

tufa1bendin8 modes are lightly damped and domi-

nate the frequency above-20 rad/sec. Therefore
the identification procedure uses a bandpass filler

with the upper cutoff frequency at 15.7 tad/see.

fnxiuency ranse of interest is ttmefore between 0.5
Hz to 2.5 Hz (3.14 rad/sec to 15.7 rad/sec).

The choice of physical coefficients used to

parametrized dynamic model must allow adjust-
meats to _ for differences between test and

theoretical responses usin8 nominal physical input

values. The gain diffeze_.es at low fm:iuencies,

implying a mismatch in rigid body response, re-
quires perameu_afion of the rigid body _:cele_a-

tion. The coupled fuse_ modes are a

li_fly damped pole-zero pair and a_ms a notch-

filter effe_ in the fi_ltmcy respmse between 10

- 15rad/sec. Thish'apm_isne, a"the -180 degree

cxossover, md a mismaw,h in this tqlim adversely

_p,cts _ _ and phase_ caculat_s.
Model/rig the dynamics of this mode is imlxramt
for control system desisn end stability m_lysis and

will be the prlma_ focus of modeUn8 in this study.

Validation Of ldentilScatioa Procedure U_ag
Simulated Data

The maximum _ identification

metbodoloSylet _ d_ezic syste=_is
validmd flint m a simutsdm with Imown pa_me-

ten. lh__ dm_mstr_ tl_wib'dity of us-

_ frmln_y din. -,_ estabJJ_thepop.
ulation size tad _ and mutati_ rates for

applkatim.

The simulatim model is driven by fliSht test
controlinputsfrom thehoveringcondition.Main

rotorpitchmd rollcyclicmd tallrotorpedalsare

all_tive, with primary excision into roll cyclic.

Tbe omput states used to form the cmt funaim are

pitch, roll, and yaw rates, and _ and roll atti-

tudes. No velocity information is necessary.

Simulation Model Parametrization

The modelstruclm'eand parametrization was

presentedtnEquations(D through(3).Tbe contin-

uous-timestate space model is analytically derived

using the Lagrangian approach and using a vector

ofphysical input cce_cie_ts, O. Forthepurposes

of this simulation study, the model structure has

been augmented to include a first order

comtmt on process noise. The process noise dy-
nami_ are to be parametrized and estimated f_om

output data.

The simulatim model was parametrized as
fotlows:

aerodynamic ccefl_ients:

lift curve slope, a

inflow equivalent cylinder height, hhnd

inflowwakerigidityfactor,wr/

hovertrimvalues:

trimmainrotorpitchangle.&

wim inflowvelocity,I,.

mainrotorbladeconstanm:

_ dam_ consta_C,

_ s_ri_ccmtant,_'_

fL_pspr__ _,

hlerfias"

fuselagecrces-mmm_t,I=

tailrotor:.

tmlrotorthrustscalefactor, K_

noisecovmianceratio.NR

process neise fune comtant, r

Kstaumfiltertheoryallowse_aalst_e,Uimates
to be obtamed in the _ of sutte and mmmne-

a=_ noise,whae _ Katman_a isu_dque_yde.
mmined _ to the rmio of process to measumment
noise. The neise co_erim_ _ is therefore

pammrizedbytherafioofprocesstomeasure.
mm_ noise.

Genetic A)_orithm Procedure

The _e6c algorithmwas implemented us.

"mSapopulation_tzeofSOOindividuals;acrossover
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rateof2/3;and a mutation rate of 1/1000. The pa-

rameters wexe allowed to vary within 50 percent of
the known simulation values.

llli|B#l|

Iteration

l_ure 4 BratLikelHmodValues

The sensitivity _ the cost function to the pa-

rame_ va]nes vary widely. Therefore, as parame-

ters begin to show convergexx:e, the range of
allowable values is progreuti,/ely narrowed in order

to demonsu'ate convergence for all paramem_

The identification proceeds by framing

10-12 separate genetic alsorithms simultaneously.

where each algorithm begins with a new random

number generator seed to select the initial guesses.

Each setofrunsthex_o_produces a scatter bmxl

of near optimal guesses for each parameter. The pa-
rameters which influence the cost function most are

identified mo_t tightly.

Fqlure 4 shows the_on of the best fit-

ness values out of the population at each genera-

den. Theresults are shown in Ftsure 5. The solid
line in each fqluxe denotes the truevMue.

The noise covariance ratio parameter c,ou-

ples only very weakly to the cost function and dis-

plays an almost random distribution until the

physical _ esfmates su/_ently con-
vene. _cre a two-step estimation procedun_

is requixed, where the nc/se ratio is allowed ton_-

main flee until physical _ta have con-

verged. The physical _ are then fixed
while the noise ratio is estimated.

This methodology clearly demmsu-ates con-

vexgence. Twenty iterations of the genetic algo-

rithm wexe run. Table 1 tabulates the parametex
estimates.

Table 1 Estimated Parameters, Simulation Study

Parameters
^

0_ 0.

curve slope, a
inflow equivslast cyi_t_ heishc hand

ineowwstnriS 'ty f.cter,

tri=msinromr  ch
trim _ vsla:ity, v.

sprt const 

fuselase cross-moment of inertia. I=

tailrotorthrustfactor,Kr_

covarlanceratio, proce.ss/measm2_ne_ NR

proce_noisetlmeconstam,r

5.73
0.46

2.0

O.02

0.05

0.02

5.0

75.0

45.0

30.000
1.0

1.0

-1.0

5.72
0.46

2.0

O.02

0.0497

0.0196

4.978

75.O

44.92

30.035
0.99

0.97

-0.99

std

3.98e-4
233e-4

1_.4

4.99e--7

9.75e-6

2.61e--6

7.7e--3

7.06e-2

6.3e-3

4.98
9.35e--4

0.11

1.8e-3
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Flight Test Identification Results

Dam consistency checks ensure that errors in
data collectim do not h_rfere with the es_fion

procedure. The requirements for th_ step were

minimal ;nthis study, since th_ esfimati_ method-

ology requires _ly rate and attitude i_fotm_on.

Consistency was checkedby integrating accelexa-

tions and rates, and ensuring that sensor _fimdes
and rates match the integrated rates and attitudes.

The flight test data was wocessed by 1) ap-

plying a bsndpass filter, and 2) decimath_ the data
from _) Hz to 8 Hz. The filter passbsnd was from
0.5 to2.5 Hz (3.1416 to 15.708 rad/sec). The lower

boundcorrespondsto the beginmS frequencyof
the _y sweep input used to drive the system,

and the upp_ bound is imposed to exclude the first

fuselage bendLn8mode at 3.4 Hz.

The flight test identification parametrization
was modified to reflect information available from

comparison between test and theoretical n_onses

generated f_cm the maly_ model u_ng nominal

pKau_ter values. The pmram_te_"list used in flight
test iden_ctx runs is shown in Table 2. The

medL_ations ire explained below.

The psrametr_ation of body inen_ ac-
counts for __ diffa_ces between theory

and test in rigid body response, especially in theroll

a_ FurrY, due to _ _ in

cross-axispredictions,therollandyaw rigid body
responses could not be simultaneously satisfied.

Therefore,yaw axis parameters were ellminRted,

and the identificationschemethereforeattempts to

fit pitch androll responses only. This is pemxissible

since for smaLl motions about hover, yaw rate does

notcouplewithmainrotorcyclicmultibladecoor-

dinatesandhasno effect on pitch androll re_

intherotor/bodyf_e_luencyregion.

The inflowequivalent cylinder height (hhnd)
isrelaaultothemainrotordynamicinflowtime

ocmstanL TI_ p&ameter had no effect on the cost

function in the bandpass f_leency region used in
this study. Therefore a quasistatic main rotor in.

flow formulation was used and this parameter was

dropl_d.

The process noise dynamics, p_
by a fu_t order time constant, was also eliminated.

This paramet_ is uniquely identifiable apart from

the noise power ratio only if the time constant falls

within the bandpau f_luency range, and was
found to have noeffecton thecost

The_.,ntif_ runwasc_ed ont us/nS
flighttestdatafromhover,withprimaryexcitation

intorollcyclic.The analyticmodel,par_

asgiveninTable2,was drive_bymainrotorpitch

md rollcyclicandtailrotorpedal.The h'k_fihood

functionwas formedusingpitchandrollratesonly.

Table2 EstimatedParameters,FlightTeat

Parameten
A

0, std

_le fK:tor,fus,d_ mU_ d im_ti__
sc_ f, otor._ t_ mmm_t_ i=_i_ _,

trim main rotor pimh angle, to

inflow velocity, v,

1_ damper constant. U_

IN_spri_ constant, g'_ ....

no_ covariance ratio, NR

bounds nominal

0.44 0.011 0.35-1.0 1.0
1.15 0.033 0.7-1.3 1.0

8.4 0.066 5-10 5.73
8.0 02,3 2-11 2.0

0.162 0.0013 0.05-0.25 0.0848

0.0172 0.00016 0.005-0.15 0.1304

0.048 0.0007 0.01-0.1 0.0613

5.5 0.I0 4-10 9.5

85.0 0.735 0-100 0

16 1.34 0-20 0

- - 0.001-0.1 -



The initial choice of boundary limits on each

parameter defines the parameter space to be
searched in the identification alsorithm. The

bounds applied to each parameter are shown in
Table 2; in esch case. the bounds are chosen to in-

clude thenominalvalue.

Table2 shows theidentificationresultsfor

flighttestdata.Itwas foundthatthenoiseratiopa-

rameterdid not convergewhilethe remaining

physical coefi_ients did. indicatin8 that relative to
the aeromechanical _ents. noise powers af-

fect the cost function only very weakly.

The cot'relati¢ll with flight test data usin 8 the

identified parameters is shown in Hgum 6. where
the roll axis response is ore'relatedwith the data set

used in the identification, and the pitch axis re-

_ is an independent _ The roll axis cor-
relation shows cleK improvemem in model

correlation using identified coefficients. The low

frequencygain predictionhas been corrected

throughtheinertiaadjusunent,andthenotchin
gainresponseduetothecoupledlag/bodyresponse

hasbeenconvcted.

The difl'e_mc_ betwem identified and nom-

inal parameters can provide physical insight into

rotor phenomena when analytic explanations can
be found for parameter diffenmces. The identified

paramemn for lift curve slope, a, and wake risidity

factor, wrf. have produced _gnificant improvement
in model response, i,,__d,e a po_ble requke-

me_t for refinement ¢ff the aemd_ theory

used in the model. The idmtified parameters for

main ro_ s_i_ _d d_p_ _ indicate
necemry mfnzmzm in the gedictim of fzequen-
cy md _ of blade motion. A model im-
pmvemeat fer bhKleia-p_se _ is now

Model_l Blade Elastklty

The identifrAtion l_¢edme has resulted in
estimated values for rotor blade _ and damp-

ing pmrame_._swhich are different from

values. The nominal mechankal damper value

may be assumed to be known since it cm be inde-

pendently verified through available data.

A procedure for modeling blade elasticity is

presented which accurately acnotmts for di_er-
ences between nominal andestimated values for in-

planemotkm fn_luencyanddamping.The method

ofassumedmodes isusedtomodelthecaseofa

flexiblebeam withdamperandspringconstraints.

This procedure is first demons_ated o_ a nonrotat-

ing beam, for which an exact solution can be ob-
tained. The method of assumed modes will be

shown to be a good approximation of theexact solu-

tion. This _proxim_ solufim can then be used in
the flexible beam analysis in the analytic hover he.

licopter model.The beam fot'mulations forbothro-

tafin8 and nonrotatin8 blades with both sprin8 and

damper constraints at the roo¢ is givm in detail in

Appendices A and B.

Approximate solution methods such as the
method ¢t assumed modes display convergence to-

ward the analytic solution as more assumed mode

shapes are added to the set of basis functions. The

firstapproechto thelagwisebendingproblemwas
rouse _ humbert of mode shapes that ful.

filled the bcnulary coeditiom for a hinged beam.

However. with this approach, convergence was not

achieved after ev¢_ after usi_ 5 mumed modes.

In order to avoid using an unacceptably large num-
ber ofbasispolynomials in the model an almma-

fiveapproechusin8s combinationofmodes that

satisfyhingedmd cantileverboundaryconditions
wm used.

Hsure 7illustratestheassumedmodes solu-

tionmethodusin8boqhthe_ androtating

beam formulatiom. For a nonrctating besm with

sprin8 and damper constraints, an exact exlxe_on

for the beam eismvalues is available and is glvm
in detail in Appendix B. The amlytic eis,envalue

equation k solved munedcally, k this case, the
root findin8 problem wm convened into a fun_on

o_miTafim l_3b_Zll gild SO[va_d _ the _etic

alSofithm, Thk solution to theexact formulation is
shown against gS_roximate solutions in _ 7.

The aplroximate solution using the __r*-_'-- ap-

prow.h, when usm8 only basis fencticm which f_I-

f_ hinsedb.m _ conditi_. _ the
exactsolut;ca slowly.With4hingedbasis polyno-

mials, thesolution has not yet cmverge& Howev-

er. the assumed modes sppromh with only one

hinged plus one cantilever mode shapes matches
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theanalyticsoiufioeexactly.Cmlvergenceisdem-

omtratedby thefactthatadditi_ofeitherhinged

cantilevermode shapesdonotfurtherchangethe

eigenvalue solution.

Figure 7 then shows the ccevevgence of the

approximate solution for the rotating beam, for
which them exists no known exact solution. Here,

thesum of2 hingedplus2cantilevermodesisnear

convergence. The addidon ¢I either one more
hinged or one more can_lever mode does not

change the solutim appreciably. The combination

of 2 hinsed plus 2 cantilever modes is choem for

model development as a good compromise between

model order and accuracy of solution.

tl
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Rigia,ldzmifl_l _ .

Elas_ m- _t _
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a
Q

Figure 8 Rotating Frame Lag RooV

Conclusions

An analytically derived linear model c£

coupled rotor/body dynamics at hover has been val-

idated against flight test data.

The analytic model with literal coeif_ients

has been p&ametrized usin8 11 physically mean-

insf'ul coei_ents, including noise covanances.
This model has been used to formulam a multi-in-

put, multi-output likelihood function in the time

domain.The analyticmodelisusedtogeneratethe

statetimehistodm.Onlybodyratesarenecessary
inthecostfunction.

The likelihoodfunctionisgloballymaxi-

mizedusing the genetic aigodthm approach, result-

ing in stadst_lly optimal maximum l_lihood

parameter esfimams.

The estimated parameters indicam that lag
mode damping in flight is approximately one-half

of the value expected from rigid blades.

The _ malyl/cprediction forlagwise

motion is obtained usin8 an elastic blade formula-
tion. The flexibk blade model was formulamd us-

inga normalmode_zroadz andch_zd us_ the
dosed fo(m solution for a nonroCa_ng beam. The

cmvergenceresultsusingamnned mode shapesin-

dicatethatthe c_zectLagwisebendingmode

shapes are obtained using a combination of c_mt/le-
vet md hinged asmmed modes.
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Appendix A. Modeling Blade Elasticity

Equation (A.I) gives the in-plme bending

equation for a roan8 beam. The derivation can be



foundinBramwell(1976).andinJohnson(1980).
Thispartialdifferentialequationrelatesthemo-
mentsdueto theinertial,centrifugal,and aerody-

nmnic fow,_ to the moment expression fl-cm

engineeringbeamtheory.

02 _2y a raY

mrS_a2r]- o
Lo: J

All quantities are understood to refer to lagwise
bending motion. Here. G(r) is thecent_ugal ten-
s/onfarce at apoint st a distance rfixxn thehubcen-
tea-,E is the modulus of elasticity. I is the lagwise

az_ moment, and _ is the rotorrotational velocity.

82 "-" 82 Rz_ G

_'.(ci, - D2q,_,R'm = 0 (A.3)

Multiply Equatim (A.3) by _p,,and integrate from

e<x<R, ar_<x< Iwhere _"isunderstood
R
to be a nondimensional offset value.

"n_is_es

I 1

• f

I

+ l_X(_I. - D2q,) f mO,,O,sL_ . 0 (.4.4)
II

The boundary conditions far a hinged blade
Integrating each term by pm'ts, the first term gives

At the hinge:

Y(e) = 0

E1_ = moment= 0
Ors

At thedp:

EZ°2r 0
8rs

°s-ZY sitar force - 0Ors =

Them is no known muflyfic solution for

Equation (A.I)duem the preamceoflhecemrifu-

gal _'m. A solution lm_d m fl|z methad of u-

L_t timlagm_ di_Eemznt _ of timform

II

where R = blade lengdL This solution method fol-

lows the medmd of sepamim of vaisbim. ,p,(x)
am a sequmce of functions, not ms:essail_ on/m-

gored, which aplm:zimale theexpected blade
and which satisfy the blade boundary conditions.

! I

• it

1

Equation (A.4) wire obtained _ the bound,sty

_ _ the htosedbh_ie,ak_ with_ end
constraintimpeaedby the damper,which is
by

O#l,.. -'" OtGrl,=."

- os _ _ a_k. |

_ whe_-D= _ ccmumt.

Similarly.thesecond_ gives

1



(,4.6)

Using Equations (A.4) through(A.6).

!

t

I

+ .Zlq.- o

TOevaluate this, n_on_ by _,Q2R(
collect terms, which remlm in

A.#, + D=,,_, + B.q, = 0

when=

WRD_ ,_' ,&'

D. =- m_2g,,v,,,v,,,,i_

Polyam_ ='e =ed ,,, tl=)b=_ _,
¢,(z). Two m= dpeiynmnt_ mee_ theneces-

sary bcsmdary cmditio= f= hinsed-free md can-

tilever-free beams, were reed in this rusty. They

lxhlged-free:

¢(x) = z

cantilever-free:

¢(x) = x* - 4._ + 6,,-.2

¢(x) = _ - I0P + 20_

Since these polynomials meet lxamdssy
conditions at x=-O and at x=-l, and tim blade for-

mulafion is integraasd from x = _rtox=-l, thebasis
pelynomials=re a'ansformed to new coordinates.
when)

.f = (1 - t,)z+ it.

Withthis_ tra=fmn=im,the=w setof
p_ynomials, which now futfill the nece_

boundary conditiom at the hinge offset and at the
blgle tip, are now

hinged-free:

¢(z) = x - t,

¢,(z) = 1.48,P- 3.33.rs - 0.12.P+ 42.ta -

0.79xa + 1.12z - 0.07

cmtilevet-fi_:

_) = 1.3x= - 5._ + 7.&r= - Off,at÷ 0.03

¢(z) = 1.39_ - 0.44_ - 12.11.0 +

2.5.10aa - 3.03x + 0.09

Appendix B. Exact Equafiou_ Of Motioa For

A Nom'otal_ll Beam

The modal_ s_vamea that the beam

_ace=_at iswrittm=,=sumd=od.1 d_.=_-

Y{x.t) = R_ ¢,(x)q,Ct)
I[



To find theexact analytic solution in the case

of root c_u'aint with both spring and damper, note

that the boundm'yconditices ate given by

¢(0)= o

•DR_-+
#"(I)= o

#'"(I),I o

wh_K andD m springmd damper constantsand

all quantities are understood to rdcr to hqWi_ mo-

tion and m defined M m Appendix A.

These boundary conditions are satisf_ by

writing the mode summatioa equation u

DRI_O) ..

where ¢,(x) and ¢c(x) refer to hia_ and cantile-

ver mode shapes.

The hinged end mode shape solutions me

given by

¢,_0)

¢_(0)

¢;(0)

¢_(1)

¢;(1)

- co.s(A)sinlK_) + co.dOOsidAx)

-0

- A [cosfA) + co.d_)]

-0

- AJ Icon) _) - cos_),_d/.)]

- AJ [co.O.)cos_) - codKA)co.O.)]]

TM cm_evcr mode da_ soludomm giv-

,--by

¢c(z) - _sfA) - st_,)_) - s/_C,ur)) +

(cod,A) + ¢od_)XcodAx) - codzf/ur))

¢c(0) - 0

¢,_(0) - 0

_0) - - 2A2 Icon) + cosl_)]

¢_(1) - - A2 [I + codgA)cosO0]

¢,c'(I) - A'[(s/n(A) - s/n/_)X- cos(A)-cos,S(A)) .,

(cos(A)+ co_))(sin(A)- sit,C4))]

Now use these known solutions for hinged

and cantilevex mode shapes in the combined solu-

_o_ given above:

¢(o) = o

¢'(o) = ¢_o)

¢"(O) - [_ + _D][-_(O)

¢"(1) - ¢_(I) + [K + i_D][- _(1)

¢"(1) - A_ [ co.,(A)slnlKA)- cosgA)sidA) +

+ 2,,u+coBb(A) cos(A)]]

¢'"(I) - o

whe_

and

"I_ boundarycoadifm st the tip gives dz

eigeavalu_equadon:

¢,"(z) = 0

or

A_ [cos(,'.)s/,d,(A)- cosk6'.)s/d.A)]+

A IX"+ _.D'J[Z + cosk_)co_)] -0
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